DESCRIPTION

Wherever flanges are used in connecting parts of a duct system, the potential for air leakage exists. Besides contributing to energy waste, leaks can also create noise. Sealing of ductwork can be accomplished with the use of neoprene gasket which adheres to flanged surfaces. When this material is attached to a flange which is then assembled to a second flange, the material is compressed and fills gaps and irregularities creating a seal.

FEATURES

- Excellent resistance to oil and fuel
- Black, continuous, closed cell, medium density rubber product
- PVC/NBR/CR closed cell rubber material manufactured in continuous rolls

MEETS

- UL94 5VA, 5VB, V-1, HF-1 and HBF listed for flame
- ASTM D 1056-07 2A2/2C2/2B2 grade product
- UL94 V-0, 5V A, HF-1, HBF

TYPICAL PROPERTIES

Color: Black
Density: 88-120 kg/m3
Hardness: 50 + 10
Compression-Deflection @ 25%: 5 - 9 psi
Compress Set @ 50%: ≤ 25%
Water Absorption: < 10%
Fluid Immersion: < 100%
Tensile Strength: 75 psi min.
Elongation: 100% min.
Flammability: FM VSS 302
UL94 V-0, 5VA, HF-1, HBF
Temperature Use: -20°F - 160°F Max (200°F intermittent)

SUBMITTED FORM
Neoprene Gasket

RELATED SMACNA RECOMMENDATIONS*

1.4 - Duct Sealing

Ducts must be sufficiently airtight to ensure economical and quiet performance of the system. It must be recognized that airtightness in ducts cannot, and need not, be absolute (as it must be in a water piping system). Codes normally require that ducts be reasonably airtight. Concerns for energy conservation, humidity control, space temperature control, room air movement, ventilation, maintenance, etc., necessitate regulating leakage by prescriptive measures in construction standards. Leakage is largely a function of static pressure and the amount of leakage in a system is significantly related to system size. Adequate airtightness can normally be ensured by a) selecting a static pressure, construction class suitable for the operating condition, and b) sealing the ductwork properly.

The designer is responsible for determining the pressure class or classes required for duct construction and for evaluating the amount of sealing necessary to achieve system performance objectives. It is recommended that all duct constructed for the 1 in. (250 Pa) and 1/2 in. (125 Pa) pressure class meet Seal Class C. However, because designers sometimes deem leakage in unsealed ducts not to have adverse effects, the sealing of all ducts in the 1 in. (250 Pa) and 1/2 in. (125 Pa) pressure class is not required by this construction manual. Designers occasionally exempt the following from sealing requirements: small systems, residential occupations, ducts located directly in the zones they serve, ducts that have short runs from volume control boxes to diffusers, certain return air ceiling plenum applications, etc. When Seal Class C is to apply to all 1 in. (250 Pa) and 1/2 in. (125 Pa) pressure class duct, the designer must require this in the project specification. The designer should review the HVAC Air Duct Leakage Test Manual for estimated and practical leakage allowances.

Seven pressure classes exist [1/2 in. (125 Pa), 1 in. (250 Pa), 2 in. (500 Pa), 3 in. (750 Pa), 4 in. (1000 Pa), 6 in. (1500 Pa), and 10 in. (2500 Pa)]. If the designer does not designate pressure class for duct construction on the contract drawings, the basis of compliance with the SMACNA HVAC Duct Construction Standards is as follows: 2 in. wg (500 Pa) for all ducts between the supply fan and variable control boxes and 1 in. wg (250 Pa) for all other ducts of any size. Seven pressure classes exist [1/2 in. (125 Pa), 1 in. (250 Pa), 2 in. (500 Pa), 3 in. (750 Pa), 4 in. (1000 Pa), 6 in. (1500 Pa), and 10 in. (2500 Pa)]. If the designer does not designate pressure class for duct construction on the contract drawings, the basis of compliance with the SMACNA HVAC Duct Construction Standards is as follows: 2 in. wg (500 Pa) for all ducts between the supply fan and variable control boxes and 1 in. wg (250 Pa) for all other ducts of any size.

Some sealants can adversely affect the release function of breakaway connections to fire dampers; consult the damper manufacturer for installation restrictions.

SUGGESTED SPECIFICATIONS

All flanged joints shall be sealed with gasketing, coded as supplied by Duro Dyne Corporation.

<table>
<thead>
<tr>
<th>ITEM#</th>
<th>CODE</th>
<th>DESCRIPTION</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>8129</td>
<td>BN1812</td>
<td>1/8” x 1/2”</td>
<td>50’/RL</td>
</tr>
<tr>
<td>8130</td>
<td>BN1434</td>
<td>1/4” x 3/4”</td>
<td>50’/RL</td>
</tr>
<tr>
<td>8131</td>
<td>BN3834</td>
<td>3/8” x 3/4”</td>
<td>25’/RL</td>
</tr>
<tr>
<td>8261</td>
<td>BN31634</td>
<td>3/16” x 3/4”</td>
<td>50’/RL</td>
</tr>
<tr>
<td>8151</td>
<td>BN51634</td>
<td>5/16” x 3/4”</td>
<td>50’/RL</td>
</tr>
<tr>
<td>8149</td>
<td>BN316-1</td>
<td>3/16” x 1”</td>
<td>50’/RL</td>
</tr>
</tbody>
</table>

*From SMACNA HVAC Duct Construction Standards Metal and Flexible * Edition 2005

© 2016 Duro Dyne Corporation

Printed in USA 9/20/16
BO050029