DESCRIPTION
Wherever there are seams or joints in ductwork or the sidewalls of the duct are pierced, the potential for air leakage exists. Besides contributing to energy waste, leaks can also create noise. Sealing of ductwork can be accomplished with the use of a viscous material which fills gaps and conforms to the surface without running.

SAS-UL is a non-flammable water based sealer for indoor or outdoor use. It provides permanent flexibility, excellent water resistance and superior sealing strength. SAS-UL is fortified to resist mold and mildew. Although the dried film is water resistant, it is not intended for applications below the water line nor subject to frequent immersions.

FEATURES
- Indoor/Outdoor Use
- Permanently Flexible
- Non-flammable
- Paintable
- Non-staining
- Mildew Resistant

TYPICAL PROPERTIES
Type: Siliconized Acrylic
Solids: 81.0 * 1%
Weight: 13.5 * .2 lbs./gal.
Color: Grey
Odor: Mild
VOC: 47 gms./ltr.
Viscosity: 320,000-500,000 CPS T-Bar, Spindle TC-93, 20
RPM @ 77°F
Flammability: Non-Flammable
Effect of Freezing: 3 Cycles
Storage Life: 1 year at 70°F
Clean With: Warm Water/Detergent
Cure Time: 72 Hours
Method of Application: Brush, trowel, putty knife or caulking gun. As a general practice, it is advisable that liquid products be stirred prior to use.

UL/723
Flame Spread: 0
Smoke Developed: 0
ASTM: C834
ASTM: E84

SUGGESTED SPECIFICATIONS
All potential points of leakage on the ductwork shall be sealed with a siliconized acrylic water based duct sealer coded SAS-UL as manufactured by Duro Dyne Corporation.

RELATED SMACNA RECOMMENDATIONS*

1.4.1 - Duct Sealing
Ducts must be sufficiently airtight to ensure economical and quiet performance of the system. It must be recognized that airtightness in ducts cannot, and need not, be absolute (as it must be in a water piping system). Codes normally require that ducts be reasonably airtight. Concerns for energy conservation, humidity control, space temperature control, room air movement, ventilation, maintenance, etc., necessitate regulating leakage by prescriptive measures in construction standards. Leakage is largely a function of static pressure and the amount of leakage in a system is significantly related to system size. Adequate airtightness can normally be ensured by a) selecting a static pressure, construction class suitable for the operating condition, and b) sealing the ductwork properly.

The designer is responsible for determining the pressure class or classes required for duct construction and for evaluating the amount of sealing necessary to achieve system performance objectives. It is recommended that all duct constructed for the 1 in. (250 Pa) and 1/2 in. (125 Pa) pressure class meet Seal Class C. However, because designers sometimes deem leakage in unsealed ducts not to have adverse effects, the sealing of all ducts in the 1 in. (250 Pa) and 1/2 in. (125 Pa) pressure class is not required by this construction manual. Designers occasionally exempt the following from sealing requirements: small systems, residential occupancies, ducts located directly in the zones they serve, ducts that have short runs from volume control boxes to diffusers, certain return air ceiling plenum applications, etc. When Seal Class C is to be applied to all 1 in. (250 Pa) and 1/2 in. (125 Pa) pressure class duct, the designer must require this in the project specification.

The designer should review the HVAC Air Duct Leakage Test Manual for estimated and practical leakage allowances.

Seven pressure classes exist [1/2 in. (125 Pa), 1 in. (250 Pa), 2 in. (500 Pa), 3 in. (750 Pa), 4 in. (1000 Pa), 6 in. (1500 Pa), and 10 in. wg (2500 Pa)]. If the designer does not designate pressure class for duct construction on the contract drawings, the basis of compliance with the SMACNA HVAC Duct Construction Standards is as follows: 2 in. wg (500 Pa) for all ducts between the supply fan and variable volume control boxes and 1 in. wg (250 Pa) for all other ducts of any application.

Some sealants can adversely affect the release function of breakaway connections to fire dampers; consult the damper manufacturer for installation restrictions.

<table>
<thead>
<tr>
<th>ITEM#</th>
<th>CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5027</td>
<td>SAS-UL1</td>
<td>Duct Sealer - 1 Gallon Pail</td>
</tr>
<tr>
<td>5029</td>
<td>SAS-UL-C</td>
<td>Duct Sealer Cartridge</td>
</tr>
</tbody>
</table>

Table 1-1 Standard Duct Sealing Requirements

<table>
<thead>
<tr>
<th>Seal Class</th>
<th>Sealing Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Class A: All Transverse joints, longitudinal seams, and duct wall penetrations</td>
</tr>
<tr>
<td></td>
<td>4 in. wg and up (1000 Pa)</td>
</tr>
<tr>
<td>B</td>
<td>Class B: All Transverse joints and longitudinal seams only</td>
</tr>
<tr>
<td></td>
<td>3 in. wg (750 Pa)</td>
</tr>
<tr>
<td>C</td>
<td>Class C: Transverse joints only</td>
</tr>
<tr>
<td></td>
<td>2 in. wg (500 Pa)</td>
</tr>
</tbody>
</table>

In addition to the above, any variable air volume systems duct of 1 in. (250 Pa) and 1/2 in. wg (125 Pa) construction class that is upstream of the VAV boxes shall meet Seal Class C

*From SMACNA HVAC Duct Construction Standards Metal and Flexible Third Edition 2005